Hydroxyl Radicals Information is Well Studied and Using Them to Fight Climate Change is Wise

The chemistry of atmospheric hydroxyl radicals (OH•) is well-established and extensively studied in the field of atmospheric chemistry. The role of hydroxyl radicals as the primary oxidant in the atmosphere has been recognized for several decades. Their reactivity and ability to initiate a wide range of chemical reactions make them crucial in controlling the concentrations and lifetimes of many atmospheric pollutants.

The formation of hydroxyl radicals in the atmosphere primarily occurs through the reaction of ozone (O3) with water vapor (H2O) in the presence of sunlight. This reaction produces two hydroxyl radicals:

O3 + H2O → 2OH•

Once formed, hydroxyl radicals rapidly react with various atmospheric species, including volatile organic compounds (VOCs), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), and methane (CH4), among others. These reactions initiate a cascade of chemical processes that lead to the removal of pollutants and the formation of secondary pollutants such as ozone, organic nitrates, and aerosols.

The chemistry of hydroxyl radicals involves complex reaction networks, including hydrogen abstraction, addition, and substitution reactions. The rate constants and reaction mechanisms of these reactions have been extensively studied and characterized through laboratory experiments, field measurements, and theoretical calculations.

To investigate the behavior of hydroxyl radicals in the atmosphere, researchers employ various techniques such as field campaigns, laboratory simulations, and modeling studies. Advanced instrumentation, such as laser-induced fluorescence and mass spectrometry, allows for the detection and measurement of hydroxyl radical concentrations in ambient air.

The understanding of hydroxyl radical chemistry is crucial for atmospheric scientists, as it helps in assessing the atmospheric lifetimes of pollutants, predicting the formation of air pollutants such as ozone and aerosols, and developing strategies to mitigate air pollution and its impact on human health and the environment.

Overall, the chemistry of atmospheric hydroxyl radicals is a well-established and continuously evolving field of study, driven by the importance of hydroxyl radicals in understanding and managing air quality and climate-related issues.

Hydroxyl radicals (OH•) are highly reactive molecules that play a crucial role in the removal of pollutants from the atmosphere. They act as a natural cleansing agent by initiating a series of chemical reactions that break down and remove various pollutants present in the air.

When hydroxyl radicals react with pollutants, such as volatile organic compounds (VOCs) and other harmful gases, they initiate a process known as oxidation. During oxidation, hydroxyl radicals transfer an oxygen atom to the pollutant molecule, causing it to undergo a chemical transformation.

The relative abundance of pollutants in the air determines the order in which they react with hydroxyl radicals. Hydroxyl radicals react with pollutants based on their concentration or molar fraction in the air. Pollutants that are more abundant or have higher concentrations will have a higher likelihood of encountering hydroxyl radicals and undergoing oxidation.

In the context of removing pollutants from a cubic kilometer (KM) of ground-level air, hydroxyl radicals will react with pollutants in proportion to their relative abundances. For example, if a certain pollutant is present in higher concentrations in the air, it will have a higher chance of encountering hydroxyl radicals and being oxidized compared to pollutants present in lower concentrations.

This relative abundance apportionment ensures that hydroxyl radicals efficiently target and remove pollutants based on their prevalence in the air. By reacting with a wide range of pollutants, hydroxyl radicals help to break them down into less harmful substances or convert them into forms that are easier to remove through other atmospheric processes, such as rainfall or deposition onto surfaces.

Overall, the use of hydroxyl radicals in removing pollutants from the air follows a natural process in which the pollutants are oxidized based on their relative abundance, allowing for effective purification of the surrounding environment.

Paul Beckwith Details the Carbon Footprint of the Wealthy Who Plan to Leave You Behind as They Are Insulated

The politicians must be told to limit the wealthy’s carbon wastage. Please write your politician and encourage them to limit the wealthy’s terrible planetary stewardship and destructive use of carbon on their yachts and jets. We are in an emergency. This is the only way it’s going to change- with new laws and real leadership. We should not have or elect politicians who do not have the balls to govern these people. In fact, Trudeau and Chrystia Freeland should have been all over this policy 5 or more years ago in Canada. The fact that they have not indicates that they do pander to the wealthy. The pandering must stop and be replaced with real leadership and real governance because the wealth is being mis-spent to the peril of humanity. It is actually criminal negligence on the part of politicians as much as the criminal carbon emissions offences the wealthy are committing. We need to understand that carbon needs to be a controlled substance for the foreseeable future and penalize its excessive emission through law.

Viva Cundliffe, PhD abd

Calling The Climate Decision Makers

The Climate Technology Decision Makers Human Flaws are Failing Humanity in Its Time of Greatest Need

As we published earlier, the next 4 years from Q2 2023 onward are going to be very much more difficult for humanity with respect to significantly worsening climate consequences because the hydroxyl is now inundated and allowing methane a free increase, and the onset of El Nino warming is going to combine with this in a way that is unprecedented. We already see it in the ocean temperature record of 2023.

We absolutely must put a stop to the laziness and cowardice that we are encountering in the Climate Technology funding world. One-dimensional solutions are being selected over the most comprehensive climate solution, which is a controlled oxidation event that would promote and secure improving biodiversity, including improving plant and mineral diversity, increasing Earth’s albedo, cleaner air, calmer weather, and normalized rain. The decision makers are shrinking from funding this procedure.

In this letter, we are again pointing to the abundant peer-reviewed literature on the Earth’s critically important hydroxyl radical, and its roles in pollutant removal, sanitation and precipitation that have made the Earth so habitable. All of this is now pretty much lost, in case you hadn’t noticed.

There is also abundant peer reviewed literature, which we list some of below, describing the deeply studied and verified paleo-chemistry work that the whole geology world has taken the time to investigate and publish on.

At ReductionTech Inc, we are no longer going to allow decision makers to fool themselves into thinking that not enough is known about oxidation, and continue to shrink from funding even a partial scale up of an affordable and simple mitigation technology to address the global situation. The global situation not only includes overheating, and the sooner that this is acknowledged by leaders, the better.

It is these climate mitigation technology decision makers sacred responsibility to be fully abreast of the planetary reality that is upon humanity, and finance to address that reality as comprehensively and efficiently as possible, without just cowardly cobbling together a bunch of one-dimensional and one gas removal solutions in hope for a collective marginal improvement. The decision makers are currently making the climate disaster more expensive and convoluted. There is absolutely no excuse for this happening, and we must insist that they be tasked with performing a better science review than what they have provided.

We assert that they must not shrink from the overwhelming scientific evidence that backs up what we are proposing and projecting for a scaled controlled hydroxyl dispersal procedure. We think that is simply boils down to these people not being abreast of the literature, and it is their sacred duty to have a solid familiarity with it, and are providing the references below to support the needed reading.

There is a lot of open literature about the hydroxyl radical in the modern atmosphere as well, that any competent researcher can locate.

We ask that decision makers more concertedly utilize our referenced materials because they are patently clear about the chemistry aspects, and any generalist should be able to see the deep merit and values in the very existence of the hydroxyl radical. We cannot live without it, frankly, and it is now losing to the record pollution levels. ReductionTech is the only team with a plan to support life- sustaining hydroxyl levels. Please don’t shrink from reviewing this important and life-saving science.

The realistic hit list of what is going wrong globally, and what a hydroxyl mitigation can do includes again: decisive global cooling, improving biodiversity, including improving plant and mineral diversity, increasing Earth’s albedo, cleaner air, calmer weather, better air quality and normalized rain.

Thank you for sharing this advisory and thank you for reviewing this critical science urgently.

Viva Cundliffe, CEO


  1. ^ Holland, Heinrich D. (2006). “The oxygenation of the atmosphere and oceans”. Philosophical Transactions of the Royal Society: Biological Sciences. 361 (1470): 903–915. doi:10.1098/rstb.2006.1838PMC 1578726PMID 16754606.
  2. ^ Margulis, LynnSagan, Dorion (1986). “Chapter 6, “The Oxygen Holocaust””. Microcosmos: Four Billion Years of Microbial Evolution. California: University of California Press. p. 99. ISBN 9780520210646.
  3. Jump up to:a b c Lyons, Timothy W.; Reinhard, Christopher T.; Planavsky, Noah J. (February 2014). “The rise of oxygen in Earth’s early ocean and atmosphere”. Nature. 506 (7488): 307–315. Bibcode:2014Natur.506..307Ldoi:10.1038/nature13068PMID 24553238S2CID 4443958.
  4. Jump up to:a b Gumsley, Ashley P.; Chamberlain, Kevin R.; Bleeker, Wouter; Söderlund, Ulf; De Kock, Michiel O.; Larsson, Emilie R.; Bekker, Andrey (6 February 2017). “Timing and tempo of the Great Oxidation Event”. Proceedings of the National Academy of Sciences of the United States of America. 114 (8): 1811–1816. doi:10.1073/pnas.1608824114ISSN 0027-8424PMC 5338422PMID 28167763.
  5. ^ Sosa Torres, Martha E.; Saucedo-Vázquez, Juan P.; Kroneck, Peter M.H. (2015). “Chapter 1, Section 2: The rise of dioxygen in the atmosphere”. In Kroneck, Peter M.H.; Sosa Torres, Martha E. (eds.). Sustaining Life on Planet Earth: Metalloenzymes mastering dioxygen and other chewy gases. Metal Ions in Life Sciences volume 15. Vol. 15. Springer. pp. 1–12. doi:10.1007/978-3-319-12415-5_1ISBN 978-3-319-12414-8PMID 25707464.
  6. ^ Ossa Ossa, Frantz; Spangenberg, Jorge E.; Bekker, Andrey; König, Stephan; Stüeken, Eva E.; Hofmann, Axel; Poulton, Simon W.; Yierpan, Aierken; Varas-Reus, Maria I.; Eickmann, Benjamin; Andersen, Morten B.; Schoenberg, Ronny (15 September 2022). “Moderate levels of oxygenation during the late stage of Earth’s Great Oxidation Event”Earth and Planetary Science Letters. 594: 117716. doi:10.1016/j.epsl.2022.117716hdl:10481/78482.
  7. ^ Plait, Phil (28 July 2014). “Poisoned Planet”. Slate. Retrieved 8 July 2019.
  8. ^ Hodgskiss, Malcolm S. W.; Crockford, Peter W.; Peng, Yongbo; Wing, Boswell A.; Horner, Tristan J. (27 August 2019). “A productivity collapse to end Earth’s Great Oxidation”. Proceedings of the National Academy of Sciences. 116 (35): 17207–17212. doi:10.1073/pnas.1900325116ISSN 0027-8424PMC 6717284PMID 31405980.
  9. ^ Schirrmeister, Bettina E.; de Vos, Jurriaan M.; Antonelli, Alexandre; Bagheri, Homayoun C. (29 January 2013). “Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event”. Proceedings of the National Academy of Sciences. 110 (5): 1791–1796. Bibcode:2013PNAS..110.1791Sdoi:10.1073/pnas.1209927110PMC3562814PMID23319632.
  10. ^ Pavlov, A. A.; Kasting, J. F. (5 July 2004). “Mass-Independent Fractionation of Sulfur Isotopes in Archean Sediments: Strong Evidence for an Anoxic Archean Atmosphere”. Astrobiology. 2 (1): 27–41. doi:10.1089/153110702753621321PMID 12449853. Retrieved 25 September 2022.
  11. ^ Zhang, Shuichang; Wang, Xiaomei; Wang, Huajian; Bjerrum, Christian J.; Hammarlund, Emma U.; Costa, M. Mafalda; Connelly, James N.; Zhang, Baomin; Su, Jin; Canfield, Donald E. (4 January 2016). “Sufficient oxygen for animal respiration 1,400 million years ago”. Proceedings of the National Academy of Sciences. 113 (7): 1731–1736. Bibcode:2016PNAS..113.1731Zdoi:10.1073/pnas.1523449113PMC 4763753PMID 26729865.
  12. Jump up to:a b c d e f Kasting, J. (12 February 1993). “Earth’s early atmosphere”. Science. 259 (5097): 920–926. doi:10.1126/science.11536547PMID 11536547S2CID 21134564.
  13. Jump up to:a b c d e Shaw, George H. (August 2008). “Earth’s atmosphere – Hadean to early Proterozoic”. Geochemistry. 68 (3): 235–264. Bibcode:2008ChEG…68..235Sdoi:10.1016/j.chemer.2008.05.001.
  14. ^ Kasting, J.F. (2014). “Modeling the Archean Atmosphere and Climate”. Treatise on Geochemistry. Elsevier. pp. 157–175. doi:10.1016/b978-0-08-095975-7.01306-1ISBN 9780080983004.
  15. Jump up to:a b c d Wiechert, U. H. (20 December 2002). “GEOLOGY: Earth’s Early Atmosphere”. Science. 298 (5602): 2341–2342. doi:10.1126/science.1079894PMID 12493902S2CID 128858098.
  16. ^ Baumgartner, Raphael J.; Van Kranendonk, Martin J.; Wacey, David; Fiorentini, Marco L.; Saunders, Martin; Caruso, Stefano; Pages, Anais; Homann, Martin; Guagliardo, Paul (1 November 2019). “Nano−porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life” (PDF). Geology. 47 (11): 1039–1043. Bibcode:2019Geo….47.1039Bdoi:10.1130/G46365.1S2CID 204258554.
  17. Jump up to:a b Trendall, A. F. (2002). “The Significance of Iron-Formation in the Precambrian Stratigraphic Record”. Precambrian Sedimentary Environments. pp. 33–66. doi:10.1002/9781444304312.ch3ISBN 978-1-4443-0431-2.
  18. Jump up to:a b Cox, Grant M.; Halverson, Galen P.; Minarik, William G.; Le Heron, Daniel P.; Macdonald, Francis A.; Bellefroid, Eric J.; Strauss, Justin V. (December 2013). “Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance”. Chemical Geology. 362: 232–249. Bibcode:2013ChGeo.362..232Cdoi:10.1016/j.chemgeo.2013.08.002S2CID 56300363.
  19. ^ Large, Ross R.; Hazen, Robert M.; Morrison, Shaunna M.; Gregory, Dan D.; Steadman, Jeffrey A.; Mukherjee, Indrani (May 2022). “Evidence that the GOE was a prolonged event with a peak around 1900 Ma”. Geosystems and Geoenvironment. 1 (2): 100036. doi:10.1016/j.geogeo.2022.100036.
  20. ^ Warke, Matthew R.; Di Rocco, Tommaso; Zerkle, Aubrey L.; Lepland, Aivo; Prave, Anthony R.; Martin, Adam P.; Ueno, Yuichiro; Condon, Daniel J.; Claire, Mark W. (16 June 2020). “The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth””. Proceedings of the National Academy of Sciences. 117 (24): 13314–13320. doi:10.1073/pnas.2003090117ISSN 0027-8424PMC 7306805PMID 32482849.
  21. ^ Luo, Genming; Ono, Shuhei; Beukes, Nicolas J.; Wang, David T.; Xie, Shucheng; Summons, Roger E. (6 May 2016). “Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago”. Science Advances. 2 (5): e1600134. doi:10.1126/sciadv.1600134ISSN 2375-2548PMC 4928975PMID 27386544.
  22. ^ Poulton, Simon W.; Bekker, Andrey; Cumming, Vivien M.; Zerkle, Aubrey L.; Canfield, Donald E.; Johnston, David T. (April 2021). “A 200-million-year delay in permanent atmospheric oxygenation”. Nature. 592 (7853): 232–236. doi:10.1038/s41586-021-03393-7ISSN 1476-4687PMID 33782617S2CID 232419035.
  23. Jump up to:a b Hodgskiss, Malcolm S.W.; Sperling, Erik A. (20 October 2021). “A prolonged, two-step oxygenation of Earth’s early atmosphere: Support from confidence intervals”. Geology. 50 (2): 158–162. doi:10.1130/g49385.1ISSN 0091-7613S2CID 244621056.
  24. Jump up to:a b c d e f g h Catling, David C.; Kasting, James F. (2017). Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge: Cambridge University Press. doi:10.1017/9781139020558ISBN 978-1-139-02055-8.[page needed]
  25. ^ Utsunomiya, Satoshi; Murakami, Takashi; Nakada, Masami; Kasama, Takeshi (January 2003). “Iron oxidation state of a 2.45 Byr-old paleosol developed on mafic volcanics”. Geochimica et Cosmochimica Acta. 67 (2): 213–221. Bibcode:2003GeCoA..67..213Udoi:10.1016/s0016-7037(02)01083-9.
  26. Jump up to:a b Johnson, Jena E.; Gerpheide, Aya; Lamb, Michael P.; Fischer, Woodward W. (27 February 2014). “O2constraints from Paleoproterozoic detrital pyrite and uraninite”. Geological Society of America Bulletin. 126 (5–6): 813–830. doi:10.1130/b30949.1ISSN 0016-7606.
  27. ^ Hofmann, Axel; Bekker, Andrey; Rouxel, Olivier; Rumble, Doug; Master, Sharad (September 2009). “Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis”. Earth and Planetary Science Letters. 286 (3–4): 436–445. Bibcode:2009E&PSL.286..436Hdoi:10.1016/j.epsl.2009.07.008hdl:1912/3068.
  28. ^ Eriksson, Patrick G.; Cheney, Eric S. (January 1992). “Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the lower proterozoic sequences of southern Africa”. Precambrian Research. 54 (2–4): 257–269. Bibcode:1992PreR…54..257Edoi:10.1016/0301-9268(92)90073-w.
  29. ^ Trendall, A.F.; Blockley, J.G. (2004). “Precambrian iron-formation”. In Eriksson, P.G.; Altermann, W.; Nelson, D.R.; Mueller, W.U.; Catuneanu, O. (eds.). Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology. Developments in Precambrian Geology. Vol. 12. pp. 359–511. doi:10.1016/S0166-2635(04)80007-0ISBN 978-0-444-51506-3.
  30. Jump up to:a b Canfield, Donald E.; Poulton, Simon W. (1 April 2011). “Ferruginous Conditions: A Dominant Feature of the Ocean through Earth’s History”. Elements. 7 (2): 107–112. doi:10.2113/gselements.7.2.107.
  31. ^ Lantink, Margriet L.; Oonk, Paul B. H.; Floor, Geerke H.; Tsikos, Harilaos; Mason, Paul R. D. (February 2018). “Fe isotopes of a 2.4 Ga hematite-rich IF constrain marine redox conditions around the GOE”Precambrian Research. 305: 218–235. doi:10.1016/j.precamres.2017.12.025. Retrieved 29 December 2022.
  32. Jump up to:a b c d Lyons, Timothy W.; Anbar, Ariel D.; Severmann, Silke; Scott, Clint; Gill, Benjamin C. (May 2009). “Tracking Euxinia in the Ancient Ocean: A Multiproxy Perspective and Proterozoic Case Study”. Annual Review of Earth and Planetary Sciences. 37 (1): 507–534. Bibcode:2009AREPS..37..507Ldoi:10.1146/annurev.earth.36.031207.124233.
  33. ^ Scholz, Florian; Severmann, Silke; McManus, James; Noffke, Anna; Lomnitz, Ulrike; Hensen, Christian (December 2014). “On the isotope composition of reactive iron in marine sediments: Redox shuttle versus early diagenesis”. Chemical Geology. 389: 48–59. Bibcode:2014ChGeo.389…48Sdoi:10.1016/j.chemgeo.2014.09.009.
  34. ^ Farquhar, J. (4 August 2000). “Atmospheric Influence of Earth’s Earliest Sulfur Cycle”. Science. 289 (5480): 756–758. Bibcode:2000Sci…289..756Fdoi:10.1126/science.289.5480.756PMID 10926533S2CID 12287304.
  35. ^ Fakhraee, Mojtaba; Hancisse, Olivier; Canfield, Donald Eugene; Crowe, Sean A.; Katsev, Sergei (22 April 2019). “Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry”Nature Geoscience. 12 (5): 375–380. doi:10.1038/s41561-019-0351-5S2CID 146026944. Retrieved 20 December 2022.
  36. ^ Frei, R.; Gaucher, C.; Poulton, S.W.; Canfield, D.E. (2009). “Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes”. Nature. 461 (7261): 250–253. Bibcode:2009Natur.461..250Fdoi:10.1038/nature08266PMID 19741707S2CID 4373201.
  37. ^ Lyons, Timothy W.; Reinhard, Christopher T. (September 2009). “Oxygen for heavy-metal fans”. Nature. 461 (7261): 179–180. doi:10.1038/461179aPMID 19741692S2CID 205049360.
  38. Jump up to:a b Kerr, R. A. (17 June 2005). “Earth Science: The Story of O2”. Science. 308 (5729): 1730–1732. doi:10.1126/science.308.5729.1730PMID 15961643S2CID 129684672.
  39. ^ Konhauser, Kurt O.; Lalonde, Stefan V.; Planavsky, Noah J.; Pecoits, Ernesto; Lyons, Timothy W.; Mojzsis, Stephen J.; Rouxel, Olivier J.; Barley, Mark E.; Rosìere, Carlos; Fralick, Phillip W.; Kump, Lee R.; Bekker, Andrey (October 2011). “Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event”. Nature. 478 (7369): 369–373. Bibcode:2011Natur.478..369Kdoi:10.1038/nature10511PMID22012395S2CID205226545.
  40. ^ Catling, David C.; Zahnle, Kevin J. (February 2020). “The Archean atmosphere”. Science Advances. 6 (9): eaax1420. Bibcode:2020SciA….6.1420Cdoi:10.1126/sciadv.aax1420ISSN 2375-2548PMC 7043912PMID 32133393.
  41. Jump up to:a b Schopf, J. William (29 June 2006). “Fossil evidence of Archaean life”. Philosophical Transactions of the Royal Society B: Biological Sciences. 361 (1470): 869–885. doi:10.1098/rstb.2006.1834PMC 1578735PMID 16754604.
  42. ^ Bosak, Tanja; Knoll, Andrew H.; Petroff, Alexander P. (30 May 2013). “The Meaning of Stromatolites”. Annual Review of Earth and Planetary Sciences. 41 (1): 21–44. Bibcode:2013AREPS..41…21Bdoi:10.1146/annurev-earth-042711-105327ISSN 0084-6597.
  43. ^ Brocks, Jochen J.; Logan, Graham A.; Buick, Roger; Summons, Roger E. (13 August 1999). “Archean Molecular Fossils and the Early Rise of Eukaryotes”. Science. 285 (5430): 1033–1036. Bibcode:1999Sci…285.1033Bdoi:10.1126/science.285.5430.1033PMID 10446042.
  44. ^ French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D. (27 April 2015). “Reappraisal of hydrocarbon biomarkers in Archean rocks”. Proceedings of the National Academy of Sciences. 112 (19): 5915–5920. Bibcode:2015PNAS..112.5915Fdoi:10.1073/pnas.1419563112PMC 4434754PMID 25918387.
  45. ^ Anbar, Ariel D.; Rouxel, Olivier (May 2007). “Metal Stable Isotopes in Paleoceanography”. Annual Review of Earth and Planetary Sciences. 35 (1): 717–746. Bibcode:2007AREPS..35..717Adoi:10.1146/annurev.earth.34.031405.125029S2CID 130960654.
  46. ^ Stüeken, E.E.; Buick, R.; Bekker, A.; Catling, D.; Foriel, J.; Guy, B.M.; Kah, L.C.; Machel, H.G.; Montañez, I.P. (1 August 2015). “The evolution of the global selenium cycle: Secular trends in Se isotopes and abundances”. Geochimica et Cosmochimica Acta. 162: 109–125. Bibcode:2015GeCoA.162..109Sdoi:10.1016/j.gca.2015.04.033.
  47. ^ Cardona, T.; Murray, J. W.; Rutherford, A. W. (May 2015). “Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria”. Molecular Biology and Evolution. 32 (5): 1310–1328. doi:10.1093/molbev/msv024PMC 4408414PMID 25657330.
  48. ^ Tomitani, Akiko (April 2006). “The evolutionary diversification of cyanobacteria: Molecular–phylogenetic and paleontological perspectives”. PNAS. 103 (14): 5442–5447. Bibcode:2006PNAS..103.5442Tdoi:10.1073/pnas.0600999103PMC 1459374PMID 16569695.
  49. ^ “Cyanobacteria: Fossil Record”. Ucmp.berkeley.edu. Retrieved 26 August 2010.
  50. ^ Dutkiewicz, A.; Volk, H.; George, S.C.; Ridley, J.; Buick, R. (2006). “Biomarkers from Huronian oil-bearing fluid inclusions: An uncontaminated record of life before the Great Oxidation Event”. Geology. 34 (6): 437. Bibcode:2006Geo….34..437Ddoi:10.1130/G22360.1.
  51. ^ Caredona, Tanai (6 March 2018). “Early Archean origin of heterodimeric Photosystem I”. Heliyon. 4 (3): e00548. doi:10.1016/j.heliyon.2018.e00548PMC 5857716PMID 29560463.
  52. ^ Howard, Victoria (7 March 2018). “Photosynthesis originated a billion years earlier than we thought, study shows”Astrobiology Magazine. Archived from the original on 1 October 2020. Retrieved 23 March 2018.
  53. Jump up to:a b Holland, Heinrich D. (November 2002). “Volcanic gases, black smokers, and the great oxidation event”. Geochimica et Cosmochimica Acta. 66 (21): 3811–3826. Bibcode:2002GeCoA..66.3811Hdoi:10.1016/s0016-7037(02)00950-x.
  54. Jump up to:a b University of Zurich (17 January 2013). “Great Oxidation Event: More oxygen through multicellularity”. ScienceDaily.
  55. ^ Anbar, A.; Duan, Y.; Lyons, T.; Arnold, G.; Kendall, B.; Creaser, R.; Kaufman, A.; Gordon, G.; Scott, C.; Garvin, J.; Buick, R. (2007). “A whiff of oxygen before the great oxidation event?”. Science. 317 (5846): 1903–1906. Bibcode:2007Sci…317.1903Adoi:10.1126/science.1140325PMID 17901330S2CID 25260892.
  56.  Dahl, T.W.; Hammarlund, E.U.; Anbar, A.D.; Bond, D.P.G.; Gill, B.C.; Gordon, G.W.; Knoll, A.H.; Nielsen, A.T.; Schovsbo, N.H. (30 September 2010). “Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish”. Proceedings of the National Academy of Sciences. 107 (42): 17911–17915. Bibcode:2010PNAS..10717911Ddoi:10.1073/pnas.1011287107PMC 2964239PMID 20884852.
  57. ^ Catling, David C.; Claire, Mark W. (August 2005). “How Earth’s atmosphere evolved to an oxic state: A status report”. Earth and Planetary Science Letters. 237 (1–2): 1–20. Bibcode:2005E&PSL.237….1Cdoi:10.1016/j.epsl.2005.06.013.
  58. Jump up to:a b Cloud, Preston E. (1968). “Atmospheric and Hydrospheric Evolution on the Primitive Earth”. Science. 160 (3829): 729–736. Bibcode:1968Sci…160..729Cdoi:10.1126/science.160.3829.729JSTOR 1724303PMID 5646415.
  59. Jump up to:a b Cloud, P. (1973). “Paleoecological Significance of the Banded Iron-Formation”. Economic Geology. 68 (7): 1135–1143. doi:10.2113/gsecongeo.68.7.1135.
  60. ^ Blankenship, Robert E. (31 March 2017). “How Cyanobacteria went green”. Science. 355 (6332): 1372–1373. Bibcode:2017Sci…355.1372Bdoi:10.1126/science.aam9365PMID 28360281S2CID 37177062.
  61. ^ “Breathing Easy Thanks to the Great Oxidation Event”. Scientific American. Retrieved 6 April 2016.
  62. ^ Konhauser, Kurt O.; Pecoits, Ernesto; Lalonde, Stefan V.; Papineau, Dominic; Nisbet, Euan G.; Barley, Mark E.; Arndt, Nicholas T.; Zahnle, Kevin; Kamber, Balz S. (April 2009). “Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event”. Nature. 458 (7239): 750–753. Bibcode:2009Natur.458..750Kdoi:10.1038/nature07858PMID 19360085S2CID 205216259.
  63. ^ Wang, Shui-Jiong; Rudnick, Roberta L.; Gaschnig, Richard M.; Wang, Hao; Wasylenki, Laura E. (4 March 2019). “Methanogenesis sustained by sulfide weathering during the Great Oxidation Event”Nature Geoscience. 12 (4): 296–300. doi:10.1038/s41561-019-0320-zS2CID 134715298. Retrieved 11 November 2022.
  64. ^ Kirschvink, Joseph L.; Kopp, Robert E. (27 August 2008). “Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II”. Philosophical Transactions of the Royal Society B: Biological Sciences. 363 (1504): 2755–2765. doi:10.1098/rstb.2008.0024PMC 2606766PMID 18487128.
  65. ^ des Marais, David J.; Strauss, Harald; Summons, Roger E.; Hayes, J.M. (October 1992). “Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment”. Nature. 359 (6396): 605–609. Bibcode:1992Natur.359..605Mdoi:10.1038/359605a0PMID 11536507S2CID 4334787.
  66. ^ Krissansen-Totton, J.; Buick, R.; Catling, D.C. (1 April 2015). “A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen”. American Journal of Science. 315 (4): 275–316. Bibcode:2015AmJS..315..275Kdoi:10.2475/04.2015.01S2CID 73687062.
  67. ^ Luo, Genming; Zhu, Xiangkun; Wang, Shuijiong; Zhang, Shihong; Jiao, Chaoqun (22 June 2022). “Mechanisms and climatic-ecological effects of the Great Oxidation Event in the early Proterozoic”Science China Earth Sciences. 65 (9): 1646–1672. doi:10.1007/s11430-021-9934-yS2CID 250065550. Retrieved 12 November 2022.
  68. Jump up to:a b Catling, D.C. (3 August 2001). “Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth”. Science. 293 (5531): 839–843. Bibcode:2001Sci…293..839Cdoi:10.1126/science.1061976PMID 11486082S2CID 37386726.
  69. ^ Lenton, T.M.; Schellnhuber, H.J.; Szathmáry, E. (2004). “Climbing the co-evolution ladder”Nature. 431 (7011): 913. Bibcode:2004Natur.431..913Ldoi:10.1038/431913aPMID 15496901S2CID 27619682.
  70. ^ Eguchi, James; Seales, Johnny; Dasgupta, Rajdeep (2019). “Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon”. Nature Geoscience. 13 (1): 71–76. Bibcode:2020NatGe..13…71Edoi:10.1038/s41561-019-0492-6PMC 6894402PMID 31807138.
  71. ^ Köhler, Inga; Konhauser, Kurt O; Papineau, Dominic; Bekker, Andrey; Kappler, Andreas (June 2013). “Biological carbon precursor to diagenetic siderite with spherical structures in iron formations”. Nature Communications. 4 (1): 1741. Bibcode:2013NatCo…4.1741Kdoi:10.1038/ncomms2770PMID23612282.
  72. ^ American, Scientific. “Abundant Oxygen Indirectly Due to Tectonics”. Scientific American. Retrieved 6 April 2016.
  73. ^ Goldblatt, C.; Lenton, T.M.; Watson, A.J. (2006). “Bistability of atmospheric oxygen and the Great Oxidation”. Nature. 443 (7112): 683–686. Bibcode:2006Natur.443..683Gdoi:10.1038/nature05169PMID 17036001S2CID 4425486.
  74. ^ Claire, M.W.; Catling, D.C.; Zahnle, K.J. (December 2006). “Biogeochemical modelling of the rise in atmospheric oxygen”. Geobiology. 4 (4): 239–269. doi:10.1111/j.1472-4669.2006.00084.xS2CID 11575334.
  75. ^ Klatt, J. M.; Chennu, A.; Arbic, B. K.; Biddanda, B. A.; Dick, G. J. (2 August 2021). “Possible link between Earth’s rotation rate and oxygenation”. Nature Geoscience. 14 (8): 564–570. Bibcode:2021NatGe..14..564Kdoi:10.1038/s41561-021-00784-3S2CID 236780731.
  76. ^ Pennisi, Elizabeth (2 August 2021). “‘Totally new’ idea suggests longer days on early Earth set stage for complex life”. Science. doi:10.1126/science.abl7415S2CID 242885564.
  77. ^ Bekker, Andrey (2014). “Huronian Glaciation”. In Amils, Ricardo; Gargaud, Muriel; Cernicharo Quintanilla, José; Cleaves, Henderson James (eds.). Encyclopedia of Astrobiology. Springer Berlin Heidelberg. pp. 1–8. doi:10.1007/978-3-642-27833-4_742-4ISBN 978-3-642-27833-4.
  78. ^ Kopp, Robert E.; Kirschvink, Joseph L.; Hilburn, Isaac A.; Nash, Cody Z. (2005). “The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis”. Proceedings of the National Academy of Sciences of the United States of America. 102 (32): 11131–11136. Bibcode:2005PNAS..10211131Kdoi:10.1073/pnas.0504878102PMC 1183582PMID 16061801.
  79. ^ Lane, Nick (5 February 2010). “First breath: Earth’s billion-year struggle for oxygen”. New Scientist. No. 2746.
  80. ^ Sperling, Erik; Frieder, Christina; Raman, Akkur; Girguis, Peter; Levin, Lisa; Knoll, Andrew (August 2013). “Oxygen, ecology, and the Cambrian radiation of animals”. Proceedings of the National Academy of Sciences of the United States of America. 110 (33): 13446–13451. Bibcode:2013PNAS..11013446Sdoi:10.1073/pnas.1312778110PMC 3746845PMID 23898193.
  81. ^ Sverjensky, Dimitri A.; Lee, Namhey (1 February 2010). “The Great Oxidation Event and Mineral Diversification”. Elements. 6 (1): 31–36. doi:10.2113/gselements.6.1.31.
  82. ^ “Evolution of Minerals”. Scientific American. March 2010.
  83. Jump up to:ab Sumner, Dawn Y.; Hawes, Ian; Mackey, Tyler J.; Jungblut, Anne D.; Doran, Peter T. (1 October 2015). “Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases”. Geology. 43 (10): 887–890. Bibcode:2015Geo….43..887Sdoi:10.1130/G36966.1hdl:10092/12361S2CID55557643.
  84. Jump up to:a b c Gross, J.; Bhattacharya, D. (August 2010). “Uniting sex and eukaryote origins in an emerging oxygenic world”. Biol. Direct. 5: 53. doi:10.1186/1745-6150-5-53PMC 2933680PMID 20731852.
  85. Jump up to:a b Hörandl E, Speijer D (February 2018). “How oxygen gave rise to eukaryotic sex”. Proc. Biol. Sci. 285 (1872): 20172706. doi:10.1098/rspb.2017.2706PMC 5829205PMID 29436502.
  86. ^ Bernstein, Harris; Bernstein, Carol (2017). “Sexual Communication in Archaea, the Precursor to Eukaryotic Meiosis”. Biocommunication of Archaea. pp. 103–117. doi:10.1007/978-3-319-65536-9_7ISBN 978-3-319-65535-2.
  87. ^ Schidlowski, Manfred; Eichmann, Rudolf; Junge, Christian (1975). “Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget”. Precambrian Research. 2 (1): 1–69. Bibcode:1975PreR….2….1Sdoi:10.1016/0301-9268(75)90018-2.
  88. ^ Schidlowski, Manfred; Eichmann, Rudolf; Junge, Christian (1976). “Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia”. Geochimica et Cosmochimica Acta. 40 (4): 449–455. Bibcode:1976GeCoA..40..449Sdoi:10.1016/0016-7037(76)90010-7.
  89. ^ “Research”.
  90. ^ Strassert, Jürgen F. H.; Irisarri, Iker; Williams, Tom A.; Burki, Fabien (2021). “A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids”. Nature. 12 (1): 1879. Bibcode:2021NatCo..12.1879Sdoi:10.1038/s41467-021-22044-zPMC 7994803PMID 33767194.
  91. Jump up to:a b c Mänd, Kaarel; Lalonde, Stefan V.; Robbins, Leslie J.; Thoby, Marie; Paiste, Kärt; Kreitsmann, Timmu; Paiste, Päärn; Reinhard, Christopher T.; Romashkin, Alexandr E.; Planavsky, Noah J.; Kirsimäe, Kalle; Lepland, Aivo; Konhauser, Kurt O. (April 2020). “Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event”. Nature Geoscience. 13 (4): 302–306. Bibcode:2020NatGe..13..302Mdoi:10.1038/s41561-020-0558-5hdl:10037/19269S2CID 212732729.
  92. ^ Van Kranendonk, Martin J. (2012). “16: A Chronostratigraphic Division of the Precambrian: Possibilities and Challenges”. In Felix M. Gradstein; James G. Ogg; Mark D. Schmitz; abi M. Ogg (eds.). The geologic time scale 2012 (1st ed.). Amsterdam: Elsevier. pp. 359–365. doi:10.1016/B978-0-444-59425-9.00016-0ISBN 978-0-44-459425-9.
  93. ^ Martin, Adam P.; Condon, Daniel J.; Prave, Anthony R.; Lepland, Aivo (December 2013). “A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi–Jatuli Event)”Earth-Science Reviews. 127: 242–261. doi:10.1016/j.earscirev.2013.10.006. Retrieved 12 December 2022.
  94. ^ Tang, Hao-Shu; Chen, Yan-Jing; Santosh, M.; Zhong, Hong; Wu, Guang; Lai, Yong (28 January 2013). “C–O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: implications for the Great Oxidation Event and ore genesis”. Geological Journal. 48 (5): 467–483. doi:10.1002/gj.2486S2CID 140672677. Retrieved 12 December 2022.
  95. ^ Kreitsmann, T.; Lepland, A.; Bau, M.; Prave, A.; Paiste, K.; Mänd, K.; Sepp, H.; Martma, T.; Romashkin, A.E.; Kirsimäe, K. (September 2020). “Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event: The carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia”. Precambrian Research. 347: 105855. Bibcode:2020PreR..347j5855Kdoi:10.1016/j.precamres.2020.105855hdl:10023/23503S2CID 225636859.
  96. ^ Mayika, Karen Bakakas; Moussavou, Mathieu; Prave, Anthony R.; Lepland, Aivo; Mbina, Michel; Kirsimäe, Kalle (21 July 2020). “The Paleoproterozoic Francevillian succession of Gabon and the Lomagundi-Jatuli event”Geology. 48 (11): 1099–1104. doi:10.1130/G47651.1

The next four years 2023-2027 are going to be extremely difficult for humanity

NOTICE and Q2 2-23 Climate Mitigation Policy Prediction From ReductionTech Inc

April 10, 2023

Based on our experiences with several different funding decisionmakers in the climate technology field, we are issuing a prediction about what is going to transpire with respect to climate solution finance in light of the critical next four year El Nino period.

Firstly this El Nino period is likely to be very serious and damaging, with a major uptick in death and property losses partially due to El Nino itself, but also because the hydroxyl radical is now fully inundated, as evidenced by the growing increase in methane levels, which is a SURE SIGN that the Earth’s hydroxyl safety system is now overwhelmed.

We see that funding decisions are not appropriately researching, understanding and recognizing the natural system opportunities, and this will result in delay that will cause losses out of the control of ReductionTech Inc, who seeks to scale a controlled hydroxyl dispersal to create an oxidation event that will halt global warming while improving biodiversity, including improving plant and mineral diversity, increasing Earth’s albedo, cleaner air, calmer weather, and normalized rain.

We are forced to advise all of the citizens of the Earth that all of the above mentioned planetary improvements are indeed very badly needed, and we offer a scalable and affordable dispersal technology that provides and oxidation event under controlled conditions at scale that can deliver them.

Unfortunately our experience with decisionmakers in the climate mitigation field is that they cannot seem to embrace the deep and obvious body of science literature that supports the offered approach, and find a way to back the proposed procedure. The literature on this geochemistry is abundant, and we unfortunately cannot force decisionmakers to perform the research that we point them to that would remove their hesitancy.

We believe that our job is to keep warning humanity about these shortcomings, so that we can find a faster path to funding a superior, clean, affordable, scalable residue free mutli-disaster mitigation that is avaliable from us.

The many decisonmakers that we have encountered have been clearly advised. This warning serves as additional advice. Until we have decsionmakers that can apprehend the referenced science, trust the nature based chemistry approach, humanity will tragically be forced to struggle longer than necessary.

I trust that this issue is clear, and I call on decisionmakers to be more proactive in better understanding the Earth’s ecosystem, before it is too late.