Not doing an oxygen airlift is suicidal

How many degrees of demise will we allow if we have the power?

The New York Time magazine is coming out with a big spread tomorrow, August 1, entitled “Losing Earth”, about how policymakers have been aware as far back as the 1980’s that emissions were a climate problem, but did not act. Neighbors, friends, and family have now internalized how deep and steep the warming trajectory is ahead of us. We all know that we need an answer like an oxygen airlift to cleanse the culprit gases and reinstate the ozone layer at the same time.

The truth is, oxygen is the only answer we have ever had; it has been our maid and butler in the environment since it appeared on Earth. It makes toxins inert and removes unneeded junk everywhere it is applied. Its use and optimization is a staple of the environmental engineering profession for contaminated water and soil. In its forms of O2 and O3, and hydrogen peroxide it is prescribed to oxidize the vast majority of endangering pollution. Even in incineration, it is the exposure time to the oxygen of the combustion process which is maximized in standard operating procedures.

We need to take this to heart. We know we are missing oxygen at the level of the ozone layer and that synthetic greenhouse gases are building up there. Oxygen and Ozone both block ultraviolet radiation and cool the Earth, at this point we can model how well it does this by computer. We need to compel authorities to model this, and if it looks promising, they should do it. Expense, when compared to the degrees of demise we are all contemplating now, is going to be irrelevant either way.

Should we look to oxygen for its potential as a panacea as the environmental profession often does? Yes. I don’t see any other candidates. Do you?

Please share this article and teach others that oxygen is a tool to reduce global warming that triggered glaciation as known in the fossil record. It happens to be widely available, which we can produce in quantity and airlift to where it should do a lot of good.

A liquid oxygen airlift and dispersal at the lower stratosphere would address these six issues:

  1. Reduction and removal of synthetic greenhouse gases which are causing 80 ppm of CO2 equivalent warming to the planet.
  2. Ozone depleting substances removal or reduction.
  3. Thickening up the ozone layer, increasing needed UV protection by reducing the relative chlorine, fluorine and bromine fractions.
  4. Methane gas removal which appears to be becoming extremely urgent.
  5. Reduce acceleration of global warming and species extinction.
  6. Slow and may even reverse ice loss.

Instead of particulates there is Georemediation

If the oysters, scallops lobsters are losing life to CO2 levels have we gone too far on our global thermostat? Should we look at something non toxic rather than toxic? Would this method to shade the planet at the mesosphere above the Ozone layer interfere with cooling efforts from using non toxic oxygen on the clouds to remove heat? How will it help the Ozone layer which really protects life? Do the particles really levitate up there and for how long? Isn’t it just more of the same thinking used lower down or is it more appropriate and logical? What is the most important thing when you have an emergency in a large room and need to leave-the exits, we need heat to exit our atmosphere and so how is this accomplished?

Georemediation mops up after geoengineering

GeoRemediation: What it IS

Oxygen, oxygen oxygen,

Non-Toxic and Sustainable while it sustains human activity and the Natural system…

  • Pro-Sunlight for Plants
  • Pro Clean Air
  • Pro ozone layer
  • Pro rain and blue sky
  • Pro Clean water
  • Pro Clean oceans
  • Pro healthy ocean pH
  • Pro healthy ocean life food chain
  • Pro Clean Soil
  • Pro Clean Food
  • Pro global cooling by removing greenhouse methane and other GHG gases
  • Pro polluter pay
  • Pro sustainable ecosystems
  • Pro-healthy, life giving conditions of every kind
  • based on the geophysical principles of the Earth system
  • A human right as a part of the global infrastructure

Works with natural geophysical and geochemical processes and obeys the dynamics and understands the composition of the natural world and how to balance it naturally.

It is Not:

  • An aerosol, it is a naturally occurring gas needed for life
  • Geoengineering, it replaces it and restores the natural system with active reduction of carbon dioxide levels
  • Expensive (50 cents per year/per person for 30 years for 8 billion people)
  • Allied with geoengineering
  • Part of a secret global government
  • Unclear about its mandate to restore the Earth to a natural like state as much as possible
  • A trade off of negative effects
  • A depopulation agenda
  • Based on artificial and synthetic precepts
  • Military
  • Political
  • A black or classified project
  • Laser or directed energy enhanced
  • Cause wildfires, Alzheimer’s, cancer, drought, illness and diseases, or sunburning
  • Going to need remediation itself like geoengineering does
  • Applied until fully tested on a small scale
  • Properly funded
  • Unfounded in science, it is rooted in historical fossil and current scientific records and applies the chemistry relationships and consequent chemistry properties and physics which are well understood.

If you want to know more go to http://www.gcgreencarbon.com, and http://www.vivacundliffe.com and check out Viva Cundliffe on YouTube or twitter: GCGreenCarbon

Provided by Viva Cundliffe, PhD abd

Sparging Oxygen Ions Into the Ocean is Remedial Geochemistry at its Best

Sparging Oxygen Ions Into the Ocean: Geochemistry at its Best

 73 grams of Oxygen Ions could draw down as much as 1Kg of COand is going to be tested.

Deeper sparging (bubbling) is better for the more acidic mid depth waters below the thermocline, thereby reducing the risk of precipitating magnesium Hydrate above pH of 8.251, and Calcium Hydroxide above 8.4. Because the logarithmic range of 7-8 is 1/10th of 8-9, the relative remediation is also higher, the water is colder and will hold more oxygen, and any gas not dissolving there will have a longer residence time in water for best absorption and remedial impact on the average overall pH.

Ideal pH and a cooler temperature has caused the ocean to absorb 1/3 of the industrial revolution’s CO22, but as it drops, the net dissolved oxygen has lowered and is more alarming when coupled with CO2 combustion 3 caused atmospheric oxygen depletion as a loss to CO2.

FIGURE 2.2 Inorganic carbon and pH vary as a function of depth and latitude. (a) Vertical profiles typical of the mid-North Pacific showing variations of several seawater chemical parameters with depth. Adapted from Morel and Hering (1993) with calculations using constants from Dickson et al. (2007) and Lueker et al. (2000). (b) Typical distribution of pH with depth along a North-South transect for the Pacific Ocean. (Byrne et al., 2010a). 2

On a 1” oxygen sparging line, delivering to a 50-60’ depth of water gives about 26 pounds of resistance to the 2100 psi pressure of the oxygen tanks. (.036lb/inch H2O x 12” x 60ft).

Influencing Seawater pH Slots

Seawater CO2 in the three slots has increasing alkalinity as it moves to the right, and as a formed carbonate ion it will trigger the two left side slots to become accommodating to more CO2, so leveraging with Oxide is shown in line 2.

1. CO2 + H2O ↔ (1,4) H2CO3 H+ + (2,5)HCO3 ↔ 2 H+ + (3,6)CO32–

2. O2- + H2O ↔ 2OH ↔ 4 H+ + 2CO32-

2CO32- is the most alkaline species, and leaves room for the other two slots to absorb CO2 as the less alkaline ions. Thesis: One O2- ion triggers room for up to 5 accommodation slots for CO2 in the buffer (arbitrary slot number in brackets) and some additional Oxygen in the form of OH- will serve as a helpful oxidant.

The sparging pH target has a limit as mentioned of 8.25, but when this much CO2 can be absorbed into the water, this technique could be extremely helpful. This would also take an oxygen demand load and remediate it as the auto-ionization of the OH of the seawater (a separate natural mechanism) would be strengthened by the presence of this added oxygen.

About 89 percent of the carbon dioxide dissolved in seawater takes the form of bicarbonate ion, about 10 percent as carbonate ion, and 1 percent as dissolved gas 4. Placing carbonate ions via this method thus could be helpful for ocean life affected by acidity as well as for CO2 mitigation. Using oxygen ions avoids the sodium (cation) loading problems with sodium hydroxide and other hydroxides, and there is little difference over concern for control of the dosage (solid powder vs gas) because it must be restricted to a target pH of 8.25 to avoid precipitation of minerals.

The effective stoichancy of oxygen ions to absorbed CO2 would range from 1:5 to 1:6 assuming that the continual uptake of CO2 by plant life and continual CO2 vapor pressure are actively moving CO2 and make some of the stochastic ratios for those overlap on the buffer system. This can be tested in the lab.

Sea Life Conditions

Because the pH adjustment is limited t within the precipitation maximum, membranes of animals are not at much risk5 , in fact slight alkalinity and negative ions (as even a small increase in ecosystem voltage) may be helpful, as well because that pH rests close to the mineralogically ideal ocean pH. Again, deeper waters can be alkalized more aggressively but would require mechanical assistance to access the deeper water or piping for sub surface sparging. Diffusion would occur and the net absorption of CO2 would be achieved regardless. Viva Cundliffe PhD abd

 

 

  1. A. R. Haas, The Effect Of The Addition Of Alkali To Sea Water Upon The Hydrogen Ion Concentration. Laboratory Of Plant Physiology, Harvard University, Cambridge. July 18, 1916
  2. National Research Council. 2010. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean. Washington, DC: The National Academies Press. Doi: 10.17226/12904
  3. Ralph Keeling, Scripps O2 Program; http://scrippso2.ucsd.edu/
  4. Scientific American, “Rising Acidity in the Ocean: The Other CO2 Problem”, retrieved April 1, 2018, https://www.scientificamerican.com/article/rising-acidity-in-the-ocean/.
  5. Idlir Liko, Jonathan T. S. Hopper, Timothy M. Allison, Justin L. P. Benesch, Carol V. Robinson, “Negative Ions Enhance Survival of Membrane Protein Complexes”,J. Am. Soc. Mass Spectrom. (2016) 27:1099Y1104

Science and Geochemistry Solution That Will Stop Aerosol Spraying -a Thesis

NATURAL, NON-TOXIC, REMEDIAL WEATHER MODIFICATION: INTRODUCTION OF THE BACKGROUND SCIENTIFIC THEORY WITH A PROCEDURAL MANUAL FOR OXYGEN ION BASED WEATHER MODIFICATION AND WITH MONITORING, DOSAGE AND DISPERSAL CALCULATIONS FOR THE VANCOUVER, BC CANADA AIR SHED SYSTEM.

The theory presented applies to all other air sheds.

2018 NATURAL NONTOXIC REMEDIAL WEATHER MODIFICATION BACKGROUND SCIENTIFIC THEORY

By Viva Cundliffe